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N
o one should have any objections
against the claim that the diamond
crystal, the most precious gem pol-
ished usually with the brilliant cut,

casts a spell on us by its stunning
beauty. The beauty would be more enhanced
and its emotional appeal would be raised to a
rational one if we would explore the microscopic

structure, say the periodic arrangement of carbon
atoms, which is actually responsible for the
dazzling glaze caused by the effective refraction
and reflection of light. Figure 1, found in many

textbooks of solid state physics, illustrates the
arrangement of atoms together with the bonding
(depicted by thin lines) of atoms provoked by
atomic force. A close look at this figure (or its
readymade model preferably) reveals that, as a

1-dimensional diagram in space, the diamond

crystal is a join of the same hexagonal rings1

and has “very big” symmetry, thereby being

conspicuously distinguished from other crystals
by its “microscopic beauty”.

The purpose of this article is to provide a new

crystal 2 having a remarkable mathematical struc-

ture similar to that of the diamond crystal. This
“crystal”, which we prosaically call the K4 crystal
with good reason, has valency 3, is a web of the
same decagonal rings, and has very big symmetry.

Toshikazu Sunada is professor of mathematics at Meiji

University, Tama-ku, Kawasaki, Japan. His email address

is sunada@math.meiji.ac.jp.
1The chair conformation in chemical terminology. One

may observe that 12 hexagonal rings gather at each

atom.
2This is different from the so-called diamond polytypes

such as lonsdaleite, a rare stone of pure carbon discov-

ered at Meteor Crater, Arizona, in 1967.

Figure 1. Carbon atoms in the diamond crystal.

A significant difference is that the K4 crystal has

chirality while the diamond crystal does not. Since

“nature favors symmetry” as is justified by plenty

of examples, it makes sense to ask if this mathe-

matical object exists in nature as a real crystal, or

may be synthesized with some atoms (by allowing

double bonds in an appropriate way if necessary).

As mentioned above, a crystal in the mathe-

matical sense is a periodic figure of 1 dimension

consisting of vertices (points representing po-

sitions of atoms) and edges (lines representing

bonding of atoms), by ignoring the physical char-

acters of atoms and atomic forces which may be

different one by one. In other words, a crystal is

considered as an infinite graph realized periodi-

cally in space. This interpretation offers us two

distinct notions of symmetry; one is extrinsic sym-

metry, the same as the classical notion bound up

directly with beauty of the spatial object, which

thus depends on realizations and is described

in terms of congruent transformations of space;
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another is intrinsic symmetry, the notion irrele-
vant to realizations, solely explained in terms of
automorphisms of graphs, and hence somehow
denoting beauty enshrined inward. In general,
intrinsic symmetry is “bigger than” extrinsic sym-
metry since congruent transformations leaving the
crystal invariant induce automorphisms, but not
vice versa.

A special feature of the diamond crystal is
that intrinsic symmetry coincides with extrinsic
symmetry. Furthermore the diamond crystal has

a strong isotropic property 3 in the sense that any
permutation of 4 edges with a common end point
extends to a congruent transformation preserving
the diamond crystal. Those observations naturally
give rise to the question as to which crystal shares
such noteworthy properties. The answer, as we
will see in the last section, is that the K4 crystal (if
one ignores its mirror image) is, in this sense, the
diamond crystal’s only “relative” (Theorem 3).

I would like to point out that the view taken up
here is quite a bit different from that of classical
crystallography, whose business is also the study
of symmetry of crystals. Actually I came across
the K4 crystal when I was studying discrete geo-
metric analysis, the field that deals with analysis
on graphs by using geometric ideas cultivated in
global analysis. In fact, the geometric theory of
random walks on crystal lattices, a topic devel-
oped recently in [1], [3], played a crucial role in its
construction.

Symmetry of the Diamond Crystal
For a start, it is worthwhile to give a precise
description of the diamond crystal. Consider a
regular tetrahedron C1C2C3C4 together with its
barycenter C. The atom at the position C is bound
to atoms at Ci so that we shall draw lines joining
C and Ci ’s. We then take the regular tetrahedron
CC′2C

′
3C

′
4 with the barycenter C1 which is to be

point-symmetrical with respect to the midpoint
A of the segment CC1 (see Figure 2). We do the

C3

C4

A

C2

C1

C

Figure 2. Regular tetrahedron.

3The term “isotropic” is used in a different context in

crystallography.

same for the other three vertices C2, C3, C4, and
then continue this process. The 1-dimensional fig-
ure obtained in this manner turns out to be the
diamond crystal.

There is another way to construct the diamond
crystal, which allows us to see the periodicity
explicitly. We again begin with the regular tetra-
hedron C1C2C3C4 and its barycenter C. Consider
the parallelepiped P with the edges C2C1, C2C3,
C2C4. Regarding P as a building block, we fill space
solidly with parallelepipeds which are exactly alike
(see Figure 3). Then the diamond crystal is formed
by gathering up the copy, in each parallelepiped,
of the above-mentioned figure inside P . From this
construction, it follows that the additive group

L = {n1

------------------------------------------------------------------------------→
C2C1 + n2

------------------------------------------------------------------------------→
C2C3 + n3

------------------------------------------------------------------------------→
C2C4; n1, n2, n3 ∈ Z}

leaves the diamond crystal invariant under trans-
lations x ֏ x+ σ (σ ∈ L). This is the periodicity
that the diamond crystal possesses. In general,
a crystal is characterized as a graph realized in
space which is invariant under translations by a
lattice group.

C1

C2

C3

C4

C

Figure 3. Parallelepiped P .

The following says that the diamond crystal
not only has big symmetry, but also has a strong
isotropic property, which as well as Observation 2
below is easily checked in view of its construction.

Observation 1. Let p and p′ be vertices of the di-
amond crystal. Let ℓ1, ℓ2, ℓ3, ℓ4 be the edges with
the end point p, and ℓ′1, ℓ

′
2, ℓ

′
3, ℓ

′
4 be the edges with

the end point p′. Then whatever the order of edges
may be, there exists a congruent transformation
T leaving the diamond crystal invariant such that
T(p) = p′ and T(ℓi) = ℓ

′
i (i = 1,2,3,4).

A graph is, in general, an abstract object, hav-
ing nothing to do with its realization and defined
solely by an incidence relation between vertices
and edges. When we think of the diamond crystal
as an abstract graph, we call it the diamond lattice.
More generally, a crystal as an abstract graph will
be called a crystal lattice. Needless to say, there
are many ways to realize a given crystal lattice
periodically in space. For instance, Figure 4 gives
a graphite-like realization of the diamond lattice.
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Figure 4. A realization of the diamond lattice
of graphite type.

A congruent transformation leaving a crystal

invariant induces an automorphism of the corre-
sponding crystal lattice in a natural manner. But
every automorphism is not necessarily derived
in this way. The following says that among all
periodic realizations of the diamond lattice, the
diamond crystal is a realization with the biggest
extrinsic symmetry.

Observation 2. Every automorphism of the dia-
mond lattice extends to a congruent transforma-
tion leaving the diamond crystal invariant.

Our concern is the existence of other crystals
enjoying the properties stated in these observa-
tions.

Crystal Lattices as Abelian Covering
Graphs
We need more mathematics to study crystal lat-
tices. The discipline we step into is not classical
crystallography, but an elementary part in algebra-
ic topology applied to graphs, a realm apparently
unrelated to crystals.

Recall that a crystal has periodicity with respect

to the action of a lattice group in space by transla-
tions. By identifying vertices (respectively, edges)
when they are superposed by such translations,
and by inducing the incidence relation of vertices
and edges to identified objects, we obtain a finite

graph4 which we call the fundamental finite graph.

For instance, the fundamental finite graph for the
diamond crystal is the graph with 2 vertices joined
by 4 multiple edges (Figure 5).

The canonical map from the crystal (lattice)
onto the fundamental finite graph is a covering
map, that is, a surjective map preserving the lo-
cal incidence relations. Therefore what we have
observed now amounts to the conclusion that a
crystal lattice is an abelian covering graph over a

finite graph with covering transformation group
ismorphic to Z3. Having this view in mind, we give

4In other words, this is the quotient graph by the lattice

group action.

Figure 5. The fundamental finite graph for the
diamond crystal.

an abstract definition of d-dimensional crystal
lattices.

Definition. A graph is said to be a d-dimensional
crystal lattice if it is an abelian covering graph

over a finite graph5 with a covering transforma-
tion group isomorphic to Zd , the free abelian group
of rank d.

Among all abelian covering graphs of a fixed
finite graph X0, there is a “maximal one”, whose
covering transformation group is H1(X0,Z), the
first homology group. The diamond lattice is the
maximal abelian covering graph over the graph
in Figure 5. It is interesting to point out that the
hexagonal lattice is the maximal abelian covering
graph over the graph with 2 vertices joined by
3 multiple edges so that the hexagonal lattice is
regarded as the 2-dimensional analogue of the
diamond lattice.

Figure 6. The hexagonal lattice and its various
realizations.

If we start from a crystal lattice X with a
fundamental finite graph X0 in the above sense,
then a crystal corresponding to X should be un-
derstood as a periodic realization Φ : X -→ R

d .
The periodicity of Φ is embodied by the equality
Φ(σx) = Φ(x)+ρ(σ), where σ is a covering trans-
formation, and ρ is an injective homomorphism
of the covering transformation group into a lattice
group in Rd .

From its nature, a periodic realization is deter-
mined uniquely by the image of a finite part of
the crystal lattice. To be exact, let E (respectively,
E0) be the set of oriented edges in X (respectively,
X0), and consider a system of vectors {v(e)}e∈E0

defined by

v(e) = Φ
(

t(e)
)

−Φ
(

o(e)
)

(e ∈ E),

5There are, of course, infinitely many choices of funda-

mental finite graphs for a fixed crystal lattice.
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where o(e) and t(e) are the origin and terminus of

e respectively. We should note that the function
v on E is invariant under the action of the cov-
ering transformation group so that it is regarded
as a function on E0. It is easily observed that

{v(e)}e∈E0 determines the periodic realization Φ.
In this sense, {v(e)}e∈E0 is called a building block.

Energy and Standard Realizations
Our mathematical experience suggests that sym-

metry has strong relevance to a certain minimum
principle. Leonhard Euler, a pioneer of calculus of
variations, said “since the fabric of the Universe is
most perfect and the work of a most wise creator,

nothing at all takes place in the Universe in which
some rule of maximum or minimum does not
appear”.6 We shall apply this “philosophy” to the
problem to look for a periodic realization with

biggest extrinsic symmetry.7

We think of a crystal as a system of harmonic
oscillators, that is, each edge represents a har-

monic oscillator whose energy is the square of its
length. We shall define the energy of a crystal “per

a unit cell” in the following way.8

Given a bounded domain D in Rd , denote by

E(D) the sum of the energy of harmonic oscilla-
tors whose end points are in D, and normalize it
in such a way that

E0(D) =
E(D)

deg(D)1−2/dvol(D)2/d
,

where deg(D) is the sum of degree (valency)
of vertices in D. Roughly E(D) ∼ vol(D) and
deg(D) ∼ vol(D) as D ↑ Rd , so that E0(D) is

bounded from above. If the crystal is transformed
by a homothetic transformation T , then, thanks
to the term vol(D)2/d , the energy E0(D) changes
to E0(T−1D).

Take an increasing sequence of bounded do-
mains {Di}

∞
i=1 with

⋃∞

i=1Di = R
d (for example,

a family of concentric balls). The energy of the
crystal (per unit cell) is defined as the limit

Ener = lim
i→∞

E0(Di).

Indeed the limit exists under a mild condition
on {Di}

∞
i=1, and Ener does not depend on choices

of {Di}
∞
i=1. We write Ener(Φ) for the energy when

the crystal is given by a periodic realization Φ. It

is easy to observe that Ener(T ◦ Φ) = Ener (Φ) for
every homothetic transformation T .

6The quotation in Vector Calculus by J. E. Marsden and

A. J. Tromba.
7The macroscopic shape of a crystal is also characterized

by a certain minimum principle (J. W. Gibbs (1878) and

P. Curie (1885)).
8A real crystal (crystalline solid) is also physically re-

garded as a system of harmonic oscillators under an

appropriate approximation of the equation of motion, but

the shape of energy is much more complicated (see [5]).

For a fixed crystal lattice, there exists a unique

periodic realization (up to homothetic transfor-
mations) which attains the minimum of Ener . Such
a realization is said to be the standard realization
and is characterized by two equalities

∑

e∈Ex

v(e) = 0,

∑

e∈E0

(

x · v(e)
)2
= c‖x‖2 (x ∈ Rd),

where Ex denotes the set of oriented edges whose
origin is x.

The diamond crystal turns out to be the stan-
dard realization of the diamond lattice. One can
also check that the honeycomb is the standard
realization of the hexagonal lattice. Thus it is not
surprising that the standard realization yields a

crystal with the biggest symmetry, as the following
theorem tells.

Theorem 1. For the standard realization Φ, there

exists a homomorphism T : Aut(X) -→ M(d) such
that Φ(gx) = T(g)Φ(x), where Aut(X) denotes the
automorphism group andM(d) is the group of con-
gruent transformations of Rd .

The existence and uniqueness of standard re-
alizations are proven along the following line. For
the existence, we first fix a fundamental finite
graph (in other words, fix a transformation group

acting on the crystal lattice). We also fix the vol-
ume of a fundamental domain for the lattice group
action in Rd and show that there exists a periodic
realizationΦ that minimizes

∑

e∈E0
‖v(e)‖2, a more

manageable version of energy functional. This is
easy indeed, but it is not obvious that this Φ (up

to homothetic transformations) does not depend

on the choice of a fundamental finite graph.9 The
independence of the choice in full generality is
somehow derived from an asymptotic property of

the simple random walk on X. At first sight, this
might sound mysterious because of the big con-
ceptual discrepancy between “randomness” and
“symmetry”, or “chance” and “order” in our ev-
eryday language. However once we perceive that

“laws of randomness” are solidly present in the
world, it is no wonder that symmetry favored by
the world is naturally connected with random-
ness, just like the relation between symmetry and
minimum principles.

In general, a random walk on a graph X is a

stochastic process on the set of vertices charac-
terized by a transition probability, i.e., a function
p on E satisfying p(e) > 0 and

∑

e∈Ex p(e) = 1. We
think of p(e) as the probability that a particle at
o(e) moves in a unit time to t(e) along the edge

9If we would know in advance that Aut(X) is isomorphic

to a crystallographic group, then it is not difficult to prove

this. As a matter of fact, however, Aut(X) is not always

isomorphic to a crystallographic group.
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e. If p is constant on Ex, i.e., p(e) =
(

deg o(e)
)−1

,

the random walk is said to be simple.

The following theorem gives a direct relation

between the standard realization and the simple
random walk.

Theorem 2. ([1])10 Let p(n, x, y) be the n-step tran-

sition probability and let Φ be the periodic realiza-

tion that minimizes
∑

e∈E0
‖v(e)‖2. There exists a

positive constant C such that

(1)

C‖Φ(x)−Φ(y)‖2 = lim
n→∞

2n
{ p(n, x, x)

p(n, y,x)
+
p(n, y, y)

p(n, x, y)
− 2

}

.

This theorem is powerful enough in order to

establish immediately what we have mentioned
above and eventually leads us to our claim that Φ
actually minimizes Ener . Crucial in the argument

is the fact that the right hand side of (1) depends
only on the graph structure and has nothing to do

with realizations. The uniqueness and Theorem 1

are also consequences of this theorem.
Theorem 2 is a byproduct of the asymptotic

expansion of p(n, x, y) at n = ∞;

p(n, x, y)
(

deg y
)−1

∼ (4πn)−d/2C(X)

×
[

1+ c1(x, y)n
−1 + c2(x, y)n

−2 + · · ·
]

.

Having help from discrete geometric analysis, we
may compute explicitly the coefficient c1(x, y) in

geometric terms of graphs. Ignoring the exact

shape of irrelevant terms, we find

c1(x, y) = −
C

4
‖Φ(x)−Φ(y)‖2 + g(x)+ g(y)+ c

with a certain function g(x) and a constant c.
Noting that the right hand side of (1) is equal to

c1(x, x)+ c1(y, y)− 2c1(x, y), we get Theorem 2.

As for the constant C(X), we have the following
relation to the energy.

Ener(Φ) ≥ dC(X)
−2/d ,

where the equality holds11 if and only if Φ is

standard. The proof, available at present, of this

remarkable inequality is not carried out by finding
a direct link between the two quantities, but is

based upon a canonical expression of the stan-

dard realization, an analogue of Albanese maps in
algebraic geometry ([1], [2], [3]).

We conclude this section with the case of max-

imal abelian covering graphs. Let P : C1(X0,R) -→

10To avoid unnecessary complication, we assume that

X is non-bipartite so that p(n, x, y) > 0 for sufficiently

large n, where a graph is said to be bipartite if one can

paint vertices by two colors in such a way that any ad-

jacent vertices have different colors. We need a minor

modification for the bipartite case.
11This inequality is for non-bipartite crystal lattices. In

the bipartite case, the right hand side should be replaced

by d
(C(X)

2

)−2/d
.

H1(X0,R)(⊂ C1(X0,R)) be the orthogonal projec-
tion with respect to the inner product onC1(X0,R),
the group of 1-chains on X0, defined by

(2) 〈e, e′〉 =















1 (e = e′)

−1 (e = e′) (e, e′ ∈ E0)

0 (otherwise).

Identify H1(X0,R) with R
d (d = dim H1(X0,R))

by choosing an orthonormal basis for the inner
product on H1(X0,R) induced from (2). Fixing
a reference point x0 ∈ V , and taking a path
c = (e1, . . . , en) in X with o(e1) = x0, t(en) = x, we
put

Φ(x) = P(π(e1))+ ·· · + P(π(en)),

where π is the covering map. The map Φ, in which
the reader may feel a flavor of Albanese maps,
is well-defined and turns out to be the standard
realization.

The K4 Crystal
We mentioned that the diamond crystal has the
strong isotropic property. This property leads us
to the following general definition in terms of
crystal lattices.

Definition. A crystal lattice X (or a general graph)
of degree n is said to be strongly isotropic if, for any
x, y ∈ V and for any permutationσ of {1,2, . . . , n},
there exists g ∈ Aut(X) such that gx = y and gei =
fσ(i) where Ex = {e1, . . . , en}, Ey = {f1, . . . , fn}.

In view of Theorem 1, the standard realization
of a crystal lattice with this property is strongly
isotropic as a crystal.

We wish to list all crystal lattices12 with the
strong isotropic property in dimensions two and
three. We thus follow the Greek tradition in ge-
ometry that beautiful objects must be classified.

Actually the classification of regular polyhedra13

turns out to have a close connection with our goal.
It is straightforward to check that the hexago-

nal lattice is a unique 2-dimensional crystal lattice
with the strong isotropic property (look at the
standard realization). In the 3-dimensional case,
we have another crystal lattice with this property
besides the diamond lattice. It is the maximal
abelian covering graph over the complete graph

K4 with 4 vertices,14 which we call the K4 lattice in
plain words.

Since the graph K4 has the strong isotropic
property, so does its maximal abel cover. The

12We restrict ourselves to the class of crystal lattices

whose standard realizations are injective on the set

vertices.
13Legend has it that the origin is in their curiosity about

the shapes of various crystals.
14In general, Kn stands for the complete graph with n
vertices, that is, the graph such that any two vertices are

joined by a single edge.
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Figure 7. K4.

K4 crystal is then defined to be the standard
realization of the K4 lattice. The definition as
such is quite simple. But its concrete construc-
tion is a bit involved and put in practice by
following the recipe at the end of the previous
section. Consider three closed paths c1 =

(e2, f1, e3), c2 = (e3, f2, e1), c3 = (e1, f3, e2) in
Figure 7. The cycles c1, c2, c3 constitute a Z-basis
of H1(K4,Z), and satisfy ‖c1‖

2 = ‖c2‖
2 = ‖c3‖

2 =

3, 〈ci , cj〉 = −1 (i ≠ j) as vectors inH1(K4,R) = R3

(note that, if ci =
------------------------------------------------→
OPi , then Pi’s are three vertices

of the regular tetrahedron with the barycen-
ter O). Looking at the projections of 1-chains
e1, e2, e3, f1, f2, f3 onto H1(K4,R), and expressing
them as linear combinations of c1, c2, c3, we obtain

v(e1) = −
1

4
c2 +

1

4
c3, v(e2) =

1

4
c1 −

1

4
c3,

v(e3) = −
1

4
c1 +

1

4
c2,

v(f1) =
1

2
c1 +

1

4
c2 +

1

4
c3, v(f2) =

1

4
c1 +

1

2
c2 +

1

4
c3,

v(f3) =
1

4
c1 +

1

4
c2 +

1

2
c3.

Since the vectors ±v(e1),±v(e2),±v(e3), ±v(f1),
±v(f2),±v(f3) give a building block, we get a

complete description of the K4 crystal.

To see how edges are joined mutually, the

following observation is more useful. In the K4

crystal, the terminuses p1, p2, p3 of three edges

with a common origin p form an equilat eral tri-

angle with the barycenter p; thus being contained

in a plane, say α. If β is the plane containing the

equilateral triangle for the origin p3 (see Figure 9),

then the dihedral angleθ betweenα andβ satisfies

cosθ = 1/3; that is, θ is the dihedral angle of the

regular tetrahedron.

The K4 crystal looks no less beautiful than

the diamond crystal. Its artistic structure has in-

trigued me for some time. The reader may agree

with my sentiments if he would produce a model

Figure 8. K4 crystal (created by Hisashi Naito).
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Figure 9. Configuration of edges in the K4

crystal.

by himself by using a chemical kit.15 An inter-
esting feature observed in this model is that
non-planar decagons all of which are congruent

form together the K4 crystal.16 Figure 10 exhibits
a decagonal ring projected onto two particular

planes17 which is obtained from the closed path18

(e1, f3, e2, e3, f2, e1, e2, f3, f2, e3) of length 10. More
interestingly, the K4 crystal has chirality; namely,
its mirror image cannot be superposed on the
original one by a rigid motion. This is quickly
checked by taking a look at a decagonal ring that
itself has chirality. In contrast, the diamond crystal
has no chirality.

e2

e3

f2

e1
e2

f3

e3
e1

e2 e3

f3f2

e3 e2

e1

f2f3

e1

f3

f2

_

_
_

_

_

_

_

_

__

Figure 10. Decagonal ring projected onto
planes.

At present, the K4 crystal is purely a math-
ematical object. Because of its beauty, however,

15As a matter of fact, there are no readymade models of

the K4 crystal so that one must put existing pieces in a kit

together by oneself.
16The number of decagonal rings passing through each

vertex is 15.
17These projections give covering maps of the K4 lattice

onto the 2-dimensional lattices in Figure 10.
18This closed path is homologous to zero, so that its lift-

ing to the K4 lattice is also closed. There are 6 decagonal

rings such that every decagonal ring is a translation of

one of them.

we are tempted to ask if the K4 crystal exists in
nature, or if it is possible to synthesize the K4

crystal. More specifically, one may ask whether it
is possible to synthesize it by using only carbon
atoms. In connection with this question, it should
be pointed out that, just like the Fullerene C60,

a compound of carbon atoms,19 whose model is
(the 1-skeleton of) the truncated icosahedron with
suitably arranged double bonds,20 we may arrange
double bonds, at least theoretically, in such a way
that every atom has valency 4. Indeed the lifting
of double bonds in K4 as in Figure 11 yields such
an arrangement in the K4 crystal.

Figure 11. K4 with double bonds.

Strongly Isotropic Crystals
Leaving the non-mathematical question aside, we
go back to our primary problem. The following
theorem states that there are no 3-dimensional
crystal lattices with the strong isotropic property
other than the diamond and K4 lattices.

Theorem 3. The degree of a 3-dimensional crystal
lattice with the strong isotropic property is three or
four. The one with degree four is the diamond lat-
tice, and the one with degree three is the K4 lattice.

The proof runs roughly as follows. For a
d-dimensional crystal lattice X with the strong
isotropic property, one can easily show that its
degree n is less than or equal to d + 1 (use the
standard realization). In particular, for d = 3,
we conclude that n = 3 or 4 (the case n = 2 is
excluded since a crystal lattice of degree two is
the 1-dimensional standard lattice).

First take a look at the case n = 4. Let Φ
be the standard realization of X, and let T :
Aut(X) -→ M(3) be the injective homomorphism
induced from Φ (Theorem 1). Put O = Φ(x), and

19Its existence was confirmed in 1990.
20A double bond should be thought of representing a

chemical characteristic of bonding, and hence does not

mean a multiple edge.
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let P1, P2, P3, P4 be the points determined by
------------------------------------------------→
OPi =

v(ei) (Ex = {e1, e2, e3, e4}). Then K = P1P2P3P4 is
a regular tetrahedron with the barycenter O. The
strong isotropic property leads us to the following
alternatives:

(1) the point symmetry Si with respect to
the midpoint of OPi (i = 1,2,3,4) belongs to
T
(

Aut(X)
)

, or

(2) the reflection Ri with respect to the plane
going vertically through the midpoint of OPi (i =
1,2,3,4) belongs to T

(

Aut(X)
)

.

If the case (2) occurs, then, say R1R2 is the
rotation whose angle is twice the dihedral angle
θ of the regular tetrahedron so that the crystallo-
graphic group T

(

Aut(X)
)

must contain a rotation
of infinite order since θ/π is irrational, there-
by leading to a contradiction. We thus have (1),
which implies that the standard realization of X is
the diamond crystal. Therefore X is the diamond
lattice.

The proof for the claim that X with n = 3 is the
K4 lattice is also elementary, although demanding
more care in chasing down the cases of the rela-
tion betweenΦ(Ex) andΦ(Ey) for adjacent vertices
x, y . The key is to verify that the factor group K
of Aut(X) by the maximal abelian subgroup is a
finite subgroup of the rotation group SO(3)which
is reflected in the chilarity of the K4 crystal and
allows us to employ the classification of finite sub-
groups of SO(3). On the other hand, the group K
acts transitively on V0 in a natural manner. In view
of the fact that the possible order of elements
in K is 1,2,3,4, or 6, we may prove that K is

isomorphic to the octahedral group,21 from which
it follows that |V0| = 4, and hence X0 = K4. An
easy argument leads to the conclusion that X is
the maximal abel cover of K4.

We are now at the final stage. It is checked that
a realization of the diamond lattice with maximal
symmetry is the diamond crystal. We can also
demonstrate, again in an ad-hoc manner, that a
realization of the K4 lattice with maximal sym-

metry is the K4 crystal or its mirror image.22 To
sum up, we have found out that there are only
three kinds of crystal structures in space with max-
imal symmetry and the strong isotropic property,
that is, the diamond crystal, the K4 crystal, and its
mirror image. This is what we primarily aimed to
observe in this article.

It is a challenging problem to list all crys-
tal lattices with the strong isotropic property
in general dimension. A typical example is the
d-dimensional diamond lattice, a generalization
of the hexagonal and diamond lattices, defined as

21Note that the octahedral group is isomorphic to the

symmetry group S4, which is also identified with the

automorphism group of K4.
22In general, a realization with maximal symmetry is not

necessarily standard.

the maximal abelian covering graph over the finite
graph with two vertices and d + 1 multiple edges
joining them. The maximal abelian covering graph
over the complete graph Kn also gives an example,
whose dimension is (n− 1)(n − 2)/2.
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